Realized Wavelet Jump-GARCH model: Can wavelet decomposition of volatility improve its forecasting?

Jozef Barunik & Lukas Vacha

Charles University in Prague, Academy of Sciences of the CR

The 4th Annual Modeling High Frequency Data in Finance Conference
Stevens Institute of Technology

July 19-22, 2012
Motivation

- Spectral estimation of integrated volatility.
Motivation

- Spectral estimation of integrated volatility.
- Use the wavelet theory for jump detection.
Motivation

- Spectral estimation of integrated volatility.
- Use the wavelet theory for jump detection.
Motivation

- Spectral estimation of integrated volatility.
- Use the wavelet theory for jump detection.
Motivation

- Spectral estimation of integrated volatility.
- Use the wavelet theory for jump detection.
- But their work is quite restricted (2^n sample length determines the bias of final estimator).
Realized volatility measurement in time-frequency space

BP futures volatility in time-frequency domain:
Scale: 5-10 min
Realized volatility measurement in time-frequency space

BP futures volatility in time-frequency domain:
Scale: 5-10 min, 10-20 min
Realized volatility measurement in time-frequency space

BP futures volatility in time-frequency domain:
Scale: 5-10 min, 10-20 min, 20-40 min
Realized volatility measurement in time-frequency space

BP futures volatility in time-frequency domain:
Scale: 5-10 min, 10-20 min, 20-40 min, 40-80 min
Realized volatility measurement in time-frequency space

BP futures volatility in time-frequency domain:
Scale: 5-10 min, 10-20 min, 20-40 min, 40-80 min, up to 1 day volatility
Realized volatility measurement in time-frequency space

BP futures volatility in time-frequency domain:
Scale: 5-10 min, 10-20 min, 20-40 min, 40-80 min, up to 1 day volatility and Jump variation
Realized volatility measurement in time-frequency space

BP futures volatility in time-frequency domain:
Total volatility (sum of all)
Motivation cont.

Theory for estimator available

Theory for estimator available

- Are these components valuable for forecasting?
Motivation cont.

Theory for estimator available

- Are these components valuable for forecasting?
- We propose a forecasting model based on volatility decomposition to several investment horizons and jumps.
Motivation cont.

Theory for estimator available

- Are these components valuable for forecasting?
- We propose a forecasting model based on volatility decomposition to several investment horizons and jumps.
- We use our time-frequency estimator robust to noise and jumps.
Motivation cont.

Theory for estimator available

- Are these components valuable for forecasting?
- We propose a forecasting model based on volatility decomposition to several investment horizons and jumps.
- We use our time-frequency estimator robust to noise and jumps.
- Propose Realized Jump-GARCH and Realized Wavelet Jump-GARCH models.
Why wavelets?

- Allowing for decomposition of the process to time-frequency space.
Why wavelets?

- Allowing for decomposition of the process to time-frequency space.
- Allowing for jump detection.
Why wavelets?

- Allowing for decomposition of the process to time-frequency space.
- Allowing for jump detection.
- Wavelet theory may be embedded into the stochastic processes.
Why wavelets?

- Allowing for decomposition of the process to time-frequency space.
- Allowing for jump detection.
- Wavelet theory may be embedded into the stochastic processes.
- Antoniou and Gustafson (1999) compare wavelets with martingales as well as stochastic processes.
Why wavelets?

- Allowing for decomposition of the process to time-frequency space.
- Allowing for jump detection.
- Wavelet theory may be embedded into the stochastic processes.
- Antoniou and Gustafson (1999) compare wavelets with martingales as well as stochastic processes.
- We utilize these results and bring them into the theory of quadratic variation.
Continuous wavelet transform

Definition

A function \(f \in L^2(\mathbb{R}) \) can be represented by the functions \(Wf \) such that,

\[
(Wf)(j, k) = \langle \psi_{j,k}, f \rangle = \left| j \right|^{-1/2} \int_{\mathbb{R}} \psi \left(\frac{s - k}{j} \right) f(s) ds
\]

(1)

where \(\langle ., . \rangle \) defines the \(L^2 \)-inner product and \(\psi_{j,k}(s) \) represents an orthogonal wavelet function \(\psi_{j,k}(s) = \left| j \right|^{-1/2} \psi\left(\frac{s-k}{j} \right) \) with a compact support with scale \(j \) and translation \(k \), where \(j \in \mathbb{R}^+, k \in \mathbb{R} \) and \(a \neq 0 \). Function \(W \) is called the continuous wavelet transform.
Martingale representation theorem

Theorem 1

For any univariate, square-integrable, continuous sample path, logarithmic prices process \((X_t)_{t\in[0,T]}\), which is not locally risk-less, there exists a representation for \(0 \leq t \leq T\):

\[
 r_t = \mu_t + M_t = \int_0^t \mu_s ds + \int_0^t \sigma_s dW_s
\]

where \(\mu_s\) is an integrable, predictable, and finite-variation stochastic process, \(\sigma_s\) is a strictly positive càdlàg stochastic process. \(\psi_{j,k} \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})\) represents the Daubechies (D4) wavelet function with a compact support.
Martingale representation theorem by wavelets

Theorem 1

For any univariate, square-integrable, continuous sample path, logarithmic prices process \((X_t)_{t \in [0,T]}\), which is not locally risk-less, there exists a representation for \(0 \leq t \leq T\):

\[
\begin{align*}
 r_t &= \mu_t + M_t = \int_0^t \mu_s ds + \int_0^t \sigma_s dW_s \\
 &= \int_0^t \int_0^\infty \int_\mathbb{R} \psi_{j,k}(s) \langle \psi_{j,k}, \mu_s \rangle dk \frac{1}{j^2} dj ds \\
 &\quad + \int_0^t \int_0^\infty \int_\mathbb{R} \psi_{j,k}(s) \langle \psi_{j,k}, \sigma_s \rangle dk \frac{1}{j^2} dj dW_s,
\end{align*}
\]

(2)

where \(\mu_s\) is an integrable, predictable, and finite-variation stochastic process, \(\sigma_s\) is a strictly positive càdlàg stochastic process.

\(\psi_{j,k} \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})\) represents the Daubechies (D4) wavelet function with a compact support.

Proof based on Calderón reconstruction formula.
Assumptions

- We work in a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P})\) satisfying usual conditions (i.e. Protter, 2004).

\[X_t = \log S_t, \] is a true process underlying the stock market price \(S_t\) evolving continuously in time.

\[(Y_t)_{t \in [0,T]} \] is an observed high-frequency data which contains microstructure noise \(\epsilon_t\).

\[Y_t = X_t + \epsilon_t, \quad (3) \]

where \(Y_t\) is observed at times \(t_i = i/n, i, \ldots, n\), and \(\epsilon_t\) is zero mean i.i.d. noise with variance \(\eta^2\).

\[X_t = \int_0^t \mu_s \, ds + \int_0^t \sigma_s \, dW_s + N_t \sum_{l=1}^J J_l, \quad (4) \]

\(J_t\) is a jump process usually assumed to be non-explosive Poisson process with \(N_t\) representing number of jumps in \(X\) and \(J_l\) jump size.
Assumptions

- We work in a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P})\) satisfying usual conditions (i.e. Protter, 2004).
- \(X_t = \log S_t\), is a true process underlying the stock market price \(S_t\) evolving continuously in time.
Assumptions

- We work in a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in [0,T]}, \mathbb{P})\) satisfying usual conditions (i.e. Protter, 2004).
- \(X_t = \log S_t\), is a true process underlying the stock market price \(S_t\) evolving continuously in time.
- \((Y_t)_{t \in [0,T]}\) is an observed high-frequency data which contains microstructure noise \(\epsilon_t\)

 \[Y_t = X_t + \epsilon_t, \]

 where \(Y_t\) is observed at times \(t_i = i/n, i, \ldots, n\), and \(\epsilon_t\) is zero mean \(i.i.d.\) noise with variance \(\eta^2\)
Assumptions

- We work in a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\in[0,T]}, \mathbb{P})\) satisfying usual conditions (i.e. Protter, 2004).
- \(X_t = \log S_t\), is a true process underlying the stock market price \(S_t\) evolving continuously in time.
- \((Y_t)_{t\in[0,T]}\) is an observed high-frequency data which contains microstructure noise \(\epsilon_t\)

\[
Y_t = X_t + \epsilon_t,
\]

where \(Y_t\) is observed at times \(t_i = i/n, i, \ldots, n\), and \(\epsilon_t\) is zero mean i.i.d. noise with variance \(\eta^2\)

- \(X_t = \int_0^t \mu_s ds + \int_0^t \sigma_s dW_s + \sum_{l=1}^{N_t} J_l\),

\(J_t\) is a jump process usually assumed to be non-explosive Poisson process with \(N_t\) representing number of jumps in \(X\) and \(J_l\) jump size.
Quadratic variation

Quadratic variation of the true log-price \((X_t)_{t \in [t-h,t]}\) composes of two parts: integrated volatility and jump variation.

\[
[X,X]_T = \int_{t-h}^{t} \sigma_s^2 ds + \sum_{t-h \leq s \leq t} J_s^2
\]

\(IV_{t,h}\)

Jump Var. (5)
Quadratic variation (wavelet-based)

Quadratic variation of the true log-price \((X_t)_{t \in [t-h,t]}\) composes of two parts: integrated volatility and jump variation.

\[
[X, X]_T = IV_{t,h} + \sum_{t-h \leq s \leq t} J_s^2
\]

\[
= \int_{t-h}^t \sigma_s^2 ds + \sum_{t-h \leq s \leq t} J_s^2
\]

\[
= \int_{t-h}^t \int_0^\infty \int_\mathbb{R} \psi_{j,k}(s) \langle \psi_{j,k}, \sigma_s^2 \rangle dk \frac{1}{j^2} dj ds + \sum_{t-h \leq s \leq t} J_s^2
\]
Problem:
How to estimate the IV_t,h: $\int_{t-h}^{t} \sigma_s^2 ds$ from the data?
Estimation of true IV part

Problem:
How to estimate the $IV_{t,h}: \int_{t-h}^{t} \sigma^2_s ds$ from the data?
We measure $(Y_t)_{t \in [0,T]}$ which contains noise as well as jumps.
Wavelet based estimator of IV

We extend the results of Fan & Wang (2008) and Zhang, Mykland and Aït-Sahalia (2005) approach

- *Maximal overlap discrete wavelet transformation (MODWT)* and Daubechies (D4) filter is used instead of simple Haar.
Wavelet based estimator of IV

We extend the results of Fan & Wang (2008) and Zhang, Mykland and Aït-Sahalia (2005) approach

- Maximal overlap discrete wavelet transformation (MODWT) and Daubechies (D4) filter is used instead of simple Haar.

- MODWT has several advantages, the most important one is that we are not limited to sample size as when using DWT.
Wavelet based estimator of IV

We extend the results of Fan & Wang (2008) and Zhang, Mykland and Aït-Sahalia (2005) approach

- **Maximal overlap discrete wavelet transformation (MODWT)** and Daubechies (D4) filter is used instead of simple Haar.

- MODWT has several advantages, the most important one is that we are not limited to sample size as when using DWT.

- $IV_{t,h}$ then is estimated in 2 steps:
Wavelet based estimator of IV

We extend the results of Fan & Wang (2008) and Zhang, Mykland and Aït-Sahalia (2005) approach

- **Maximal overlap discrete wavelet transformation (MODWT)** and Daubechies (D4) filter is used instead of simple Haar.

- MODWT has several advantages, the most important one is that we are not limited to sample size as when using DWT.

- $IV_{t,h}$ then is estimated in 2 steps:
 - Estimate jumps variation using wavelets.
Wavelet based estimator of IV

We extend the results of Fan & Wang (2008) and Zhang, Mykland and Aït-Sahalia (2005) approach

- **Maximal overlap discrete wavelet transformation (MODWT)** and Daubechies (D4) filter is used instead of simple Haar.

- MODWT has several advantages, the most important one is that we are not limited to sample size as when using DWT.

- $IV_{t,h}$ then is estimated in 2 steps:
 - Estimate jumps variation using wavelets.
 - Estimate IV using wavelet-based estimator on the basis of TSRV.
Jump Variation

Jump estimation

Let $\widetilde{W}_{1,i}$ be a 1st level wavelet coefficients of $[Y]_T$. If for some $\widetilde{W}_{1,i}$

$$|\widetilde{W}_{1,i}| > \frac{\text{median}\{|\widetilde{W}_{1,i}|, i = 1, \ldots, n\}}{0.6745} \sqrt{2 \log n}, \quad (6)$$

$\hat{\tau}_l = \{i\}$ is estimated jump location with size of $\bar{Y}_{\tau_{l}^+} - \bar{Y}_{\tau_{l}^-}$, the averages over $[\hat{\tau}_l, \hat{\tau}_l + \delta_n]$ and $[\hat{\tau}_l, \hat{\tau}_l - \delta_n]$ respectively, with $\delta_n > 0$ being a small neighborhood of estimated jump location $\hat{\tau}_l \pm \delta_n$
Jump Variation

Jump estimation

Let $\tilde{W}_{1,i}$ be a 1^{st} level wavelet coefficients of $[Y]_T$. If for some $\tilde{W}_{1,i}$

$$|\tilde{W}_{1,i}| > \frac{median\{|\tilde{W}_{1,i}|, i = 1, \ldots, n\}}{0.6745} \sqrt{2 \log n}, \quad (6)$$

$\hat{\tau}_l = \{i\}$ is estimated jump location with size of $\bar{Y}_{\hat{\tau}_l^+} - \bar{Y}_{\hat{\tau}_l^-}$, the averages over $[\hat{\tau}_l, \hat{\tau}_l + \delta_n]$ and $[\hat{\tau}_l, \hat{\tau}_l - \delta_n]$ respectively, with $\delta_n > 0$ being a small neighborhood of estimated jump location $\hat{\tau}_l \pm \delta_n$

Jump variation

Jump variation $WJV_T = \sum_{l=1}^{N_t} J_l^2$ is then estimated by:

$$\overline{WJV}_T = \sum_{l=1}^{N_t} (\bar{Y}_{\hat{\tau}_l^+} - \bar{Y}_{\hat{\tau}_l^-})^2$$

(0.6745 is a robust estimate of standard deviation)
Jump Variation cont.

Consistency of Wavelet Jump estimator

\widehat{WJV}_T estimator provides consistent measure of jumps over period of $[0, T]$

$$\text{plim}_{n \to \infty} \widehat{WJV}_T = \sum_{l=1}^{N_t} J_l^2$$

with the convergence rate $N^{-1/4}$.
Jump Variation cont.

Consistency of Wavelet Jump estimator

\(\hat{W}J^V_T \) estimator provides consistent measure of jumps over period of \([0, T]\)

\[
\text{plim}_{n \to \infty} \hat{W}J^V_T = \sum_{l=1}^{N_t} J_l^2
\]

with the convergence rate \(N^{-1/4}\).

- Knowing we are able to estimate jumps consistently, we utilize Zhang, Mykland and Aït-Sahalia (2005) TSRV on wavelet coefficients to deal with noise.
Wavelet based estimator of IV cont.

- The following estimator based on the MODWT of the jump-adjusted returns data $Y^{(J)}$ solves both problems.
Wavelet based estimator of IV cont.

- The following estimator based on the MODWT of the jump-adjusted returns data \(Y^{(J)} \) solves both problems.

J-WTSRV estimator

\[
\langle X, X \rangle_{T}^{(J-WTSRV)} = \left[Y^{(J)}, Y^{(J)} \right]_{T}^{(WRV)} - \frac{\tilde{n}}{n} \left[Y^{(J)}, Y^{(J)} \right]_{T}^{(all)},
\]

where \(\left[Y^{(J)}, Y^{(J)} \right]_{T}^{(WRV)} = \frac{1}{K} \sum_{k=1}^{K} \sum_{j=s+1}^{J} \sum_{i=1}^{n} \tilde{W}_{j,i}^{2} \) obtained from MODWT wavelet coefficient estimates on the grid of size \(\tilde{n} = n/K \), \(n \) is number of intraday observations and \(J_s \) is number of scales we consider.
The following estimator based on the MODWT of the jump-adjusted returns data $Y^{(J)}$ solves both problems.

\[
\langle X, X \rangle_{T}^{(J-WTSRV)} = \left[Y^{(J)}, Y^{(J)} \right]_{T}^{(WRV)} - \frac{\tilde{n}}{n} \left[Y^{(J)}, Y^{(J)} \right]_{T}^{(all)},
\]

where $\left[Y^{(J)}, Y^{(J)} \right]_{T}^{(WRV)} = \frac{1}{K} \sum_{k=1}^{K} \sum_{j=1}^{J_{s}+1} \sum_{i=1}^{n} \tilde{W}_{j,i}^{2}$ obtained from MODWT wavelet coefficient estimates on the grid of size $\tilde{n} = n/K$, n is number of intraday observations and J_{s} is number of scales we consider.

- J-WTSRV is unbiased and consistent estimator of $IV_{t,h}$
So we obtain a *true* volatility decomposed to several investment horizons and jumps.
Realized GARCH framework for forecasting

- So we obtain a *true* volatility decomposed to several investment horizons and jumps.
- In the next step, we utilize it to build a forecasting model.
Realized GARCH framework for forecasting

- So we obtain a *true* volatility decomposed to several investment horizons and jumps.
- In the next step, we utilize it to build a forecasting model.
- Several approaches in literature, i.e. Andersen, Bollerslev and Diebold (2007), Corsi, Pirino and Ren (2002), Corsi (2009).
So we obtain a *true* volatility decomposed to several investment horizons and jumps.

In the next step, we utilize it to build a forecasting model.

Several approaches in literature, i.e. Andersen, Bollerslev and Diebold (2007), Corsi, Pirino and Ren (2002), Corsi (2009).

We utilize a different approach: Realized GARCH of Hansen et al. (2011).
So we obtain a *true* volatility decomposed to several investment horizons and jumps.

In the next step, we utilize it to build a forecasting model.

Several approaches in literature, i.e. Andersen, Bollerslev and Diebold (2007), Corsi, Pirino and Ren (2002), Corsi (2009).

We utilize a different approach: Realized GARCH of Hansen et al. (2011).

They improve GARCH by connecting latent volatility with realized measures.
So we obtain a *true* volatility decomposed to several investment horizons and jumps.

In the next step, we utilize it to build a forecasting model.

Several approaches in literature, i.e. Andersen, Bollerslev and Diebold (2007), Corsi, Pirino and Ren (2002), Corsi (2009).

We utilize a different approach: Realized GARCH of Hansen et al. (2011).

They improve GARCH by connecting latent volatility with realized measures.

Model introduces a measurement equation which ties the realized measure to latent volatility.
Realized GARCH framework for forecasting cont.

Hansen et al. (2011) model

\[r_t = \sqrt{h_t} z_t, \quad (9) \]
\[\log(h_t) = \omega + \beta \log(h_{t-1}) + \gamma \log(x_{t-1}) \quad (10) \]
\[\log(x_t) = \xi + \psi \log(h_t) + \tau_1 z_t + \tau_2 z_t^2 + u_t, \quad (11) \]

where \(r_t \) is the return, \(x_t \) a realized measure of volatility, \(z_t \sim i.i.d(0, 1) \) and \(u_t \sim i.i.d(0, \sigma_u^2) \) with \(z_t \) and \(u_t \) being mutually independent, \(h_t = \text{var}(r_t|\mathcal{F}_{t-1}) \) with \(\mathcal{F}_t = \sigma(r_t, x_t, r_{t-1}, x_{t-1}, \ldots) \) and \(\tau(z) = \tau_1 z_t + \tau_2 z_t^2 \) is called leverage function.
Realized GARCH framework for forecasting cont.

Hansen et al. (2011) model

\[r_t = \sqrt{h_t} z_t, \] \quad (9)
\[\log(h_t) = \omega + \beta \log(h_{t-1}) + \gamma \log(x_{t-1}) \] \quad (10)
\[\log(x_t) = \xi + \psi \log(h_t) + \tau_1 z_t + \tau_2 z_t^2 + u_t, \] \quad (11)

where \(r_t \) is the return, \(x_t \) a realized measure of volatility, \(z_t \sim i.i.d(0, 1) \) and \(u_t \sim i.i.d(0, \sigma_u^2) \) with \(z_t \) and \(u_t \) being mutually independent, \(h_t = \text{var}(r_t|\mathcal{F}_{t-1}) \) with \(\mathcal{F}_t = \sigma(r_t, x_t, r_{t-1}, x_{t-1}, \ldots) \) and \(\tau(z) = \tau_1 z_t + \tau_2 z_t^2 \) is called leverage function.

- The key is last equation - measurement equation.
We include jump component WJV as well as decomposed volatilities $x_{j,t}$

The model

\begin{align*}
 r_t &= \sqrt{h_t} z_t, \\
 \log(h_t) &= \omega + \beta \log(h_{t-1}) + \sum_{j=1}^{J} \gamma_j \log(x_{j,t-1}) + \\
 &\quad + \gamma_J \log(1 + WJV_{t-1}), \\
 \log(x_t) &= \xi + \psi \log(h_t) + \tau_1 z_t + \tau_2 z_t^2 + u_t,
\end{align*}

Parameters are estimated using QMLE.
Empirical results

- British pound (GBP), Swiss franc (CHF) and Euro (EUR) futures.
Empirical results

- British pound (GBP), Swiss franc (CHF) and Euro (EUR) futures.
- First we study if we can improve Realized GARCH with precise volatility measures.
Empirical results

- British pound (GBP), Swiss franc (CHF) and Euro (EUR) futures.
- First we study if we can improve Realized GARCH with precise volatility measures.
- RV, BV, TSRV, RK and JWTSRV are used.
Empirical results

- British pound (GBP), Swiss franc (CHF) and Euro (EUR) futures.
- First we study if we can improve Realized GARCH with precise volatility measures.
- RV, BV, TSRV, RK and JWTSRV are used.
- Then we include jump ⇒ Realized Jump GARCH
Empirical results

- British pound (GBP), Swiss franc (CHF) and Euro (EUR) futures.
- First we study if we can improve Realized GARCH with precise volatility measures.
- RV, BV, TSRV, RK and JWTGSRV are used.
- Then we include jump \(\Rightarrow \) Realized Jump GARCH
- Finally study the effect of decomposed volatility to 510 minutes, 1020 minutes, 2040 minutes and 4080 minutes, and the rest (80 minutes up to 1 day)
Table 3: Results for the GBP futures: in-sample fits of GARCH(1,1), Realized GARCH(1,1) with RV, BV, RK, TSRV, JWTTSRV, Realized (Wavelet)Jump-GARCH denoted as RJ-G and RWJ-G and Realized Jump-GARCH on JWTTSRV\textsubscript{j} decompositions. Robust standard errors are reported in parentheses.

<table>
<thead>
<tr>
<th>In-sample</th>
<th>GARCH</th>
<th>Realized GARCH</th>
<th>Realized (W)J-GARCH</th>
<th>Realized Jump-GARCH on JWTTSRV\textsubscript{j}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RV</td>
<td>BV</td>
<td>RK</td>
<td>JWSRV</td>
</tr>
<tr>
<td>(\omega)</td>
<td>0.147</td>
<td>0.155</td>
<td>0.130</td>
<td>0.153</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.029)</td>
<td>(0.024)</td>
<td>(0.030)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.271</td>
<td>0.283</td>
<td>0.267</td>
<td>0.288</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.033)</td>
<td>(0.028)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0.599</td>
<td>0.568</td>
<td>0.691</td>
<td>0.573</td>
</tr>
<tr>
<td></td>
<td>(0.037)</td>
<td>(0.039)</td>
<td>(0.035)</td>
<td>(0.041)</td>
</tr>
<tr>
<td>(\tau_j)</td>
<td>0.049</td>
<td>0.059</td>
<td>0.249</td>
<td>0.331</td>
</tr>
<tr>
<td></td>
<td>(0.063)</td>
<td>(0.073)</td>
<td>(0.049)</td>
<td>(0.054)</td>
</tr>
<tr>
<td>(\tau_{W1})</td>
<td>0.006</td>
<td>0.012</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td></td>
</tr>
<tr>
<td>(\tau_{W2})</td>
<td>0.006</td>
<td>0.007</td>
<td>0.252</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.003)</td>
<td>(0.033)</td>
<td></td>
</tr>
<tr>
<td>(\tau_{W3})</td>
<td>0.121</td>
<td>0.121</td>
<td>0.121</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.017)</td>
<td>(0.016)</td>
<td></td>
</tr>
<tr>
<td>(\tau_{W4})</td>
<td>0.121</td>
<td>0.121</td>
<td>0.121</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.017)</td>
<td>(0.016)</td>
<td></td>
</tr>
<tr>
<td>(\tau_{W5})</td>
<td>0.121</td>
<td>0.121</td>
<td>0.121</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.019)</td>
<td>(0.017)</td>
<td>(0.016)</td>
<td></td>
</tr>
<tr>
<td>(\xi)</td>
<td>-0.542</td>
<td>-0.549</td>
<td>-0.626</td>
<td>-0.533</td>
</tr>
<tr>
<td></td>
<td>(0.056)</td>
<td>(0.073)</td>
<td>(0.074)</td>
<td>(0.074)</td>
</tr>
<tr>
<td>(\psi)</td>
<td>1.429</td>
<td>1.490</td>
<td>1.456</td>
<td>1.445</td>
</tr>
<tr>
<td></td>
<td>(0.105)</td>
<td>(0.108)</td>
<td>(0.105)</td>
<td>(0.105)</td>
</tr>
<tr>
<td>(\sigma_0)</td>
<td>0.313</td>
<td>0.308</td>
<td>0.379</td>
<td>0.318</td>
</tr>
<tr>
<td></td>
<td>(0.050)</td>
<td>(0.080)</td>
<td>(0.080)</td>
<td>(0.080)</td>
</tr>
<tr>
<td>(\tau_j)</td>
<td>-0.041</td>
<td>-0.046</td>
<td>-0.040</td>
<td>-0.043</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.012)</td>
<td>(0.014)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>(\tau_{T2})</td>
<td>0.077</td>
<td>0.064</td>
<td>0.107</td>
<td>0.080</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.011)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>(l(r, x))</td>
<td>-1185.123</td>
<td>-1172.427</td>
<td>-1327.555</td>
<td>-1196.632</td>
</tr>
<tr>
<td></td>
<td>-1134.104</td>
<td>-1122.474</td>
<td>-1120.224</td>
<td></td>
</tr>
<tr>
<td>(\alpha_{out})</td>
<td>-0.673</td>
<td>-0.251</td>
<td>-0.325</td>
<td>-0.215</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td>(0.099)</td>
<td>(0.111)</td>
<td>(0.099)</td>
</tr>
<tr>
<td>(\beta_{out})</td>
<td>1.607</td>
<td>0.946</td>
<td>1.026</td>
<td>0.874</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
<td>(0.099)</td>
<td>(0.111)</td>
<td>(0.099)</td>
</tr>
<tr>
<td>(R_{out})</td>
<td>0.083</td>
<td>0.339</td>
<td>0.399</td>
<td>0.262</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.050)</td>
<td>(0.050)</td>
<td>(0.050)</td>
</tr>
<tr>
<td>HMSE(\text{out})</td>
<td>2.877</td>
<td>1.674</td>
<td>1.758</td>
<td>2.307</td>
</tr>
<tr>
<td></td>
<td>(0.048)</td>
<td>(0.045)</td>
<td>(0.047)</td>
<td>(0.047)</td>
</tr>
<tr>
<td>QLIKE(\text{out})</td>
<td>0.459</td>
<td>0.459</td>
<td>0.459</td>
<td>0.459</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.023)</td>
<td>(0.023)</td>
<td>(0.023)</td>
</tr>
</tbody>
</table>
Empirical results cont.

<table>
<thead>
<tr>
<th>In-sample</th>
<th>RV</th>
<th>BV</th>
<th>RK</th>
<th>TSRV</th>
<th>JWTTSRV</th>
<th>Realized (W)J-GARCH</th>
<th>Realized Jump-GARCH on JWTTSRV</th>
<th>j = 1</th>
<th>j = 2</th>
<th>j = 3</th>
<th>j = 4</th>
<th>j = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>0.007</td>
<td>0.147</td>
<td>0.155</td>
<td>0.130</td>
<td>0.153</td>
<td>0.195</td>
<td>0.194</td>
<td>0.194</td>
<td>0.174</td>
<td>0.165</td>
<td>0.156</td>
<td>0.113</td>
</tr>
<tr>
<td>(0.004)</td>
<td>(0.025)</td>
<td>(0.029)</td>
<td>(0.024)</td>
<td>(0.030)</td>
<td>(0.035)</td>
<td>(0.033)</td>
<td>(0.027)</td>
<td>(0.039)</td>
<td>(0.032)</td>
<td>(0.030)</td>
<td>(0.021)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>α</td>
<td>0.052</td>
<td>0.351</td>
</tr>
<tr>
<td>(0.014)</td>
</tr>
<tr>
<td>β</td>
<td>0.941</td>
<td>0.599</td>
<td>0.568</td>
<td>0.691</td>
<td>0.573</td>
<td>0.494</td>
<td>0.511</td>
<td>0.524</td>
<td>0.562</td>
<td>0.626</td>
<td>0.751</td>
<td>0.806</td>
</tr>
<tr>
<td>(0.016)</td>
<td>(0.037)</td>
<td>(0.039)</td>
<td>(0.033)</td>
<td>(0.041)</td>
<td>(0.041)</td>
<td>(0.041)</td>
<td>(0.041)</td>
<td>(0.041)</td>
<td>(0.041)</td>
<td>(0.041)</td>
<td>(0.028)</td>
<td>(0.026)</td>
</tr>
<tr>
<td>γ</td>
<td>0.271</td>
<td>0.283</td>
<td>0.207</td>
<td>0.288</td>
<td>0.330</td>
<td>0.351</td>
<td>0.351</td>
<td>0.351</td>
<td>0.351</td>
<td>0.351</td>
<td>0.351</td>
<td>0.351</td>
</tr>
<tr>
<td>(0.033)</td>
<td>(0.033)</td>
<td>(0.028)</td>
<td>(0.035)</td>
<td>(0.033)</td>
<td>(0.033)</td>
<td>(0.033)</td>
<td>(0.033)</td>
<td>(0.033)</td>
<td>(0.033)</td>
<td>(0.033)</td>
<td>(0.033)</td>
<td>(0.033)</td>
</tr>
<tr>
<td>τ_j</td>
<td>0.043</td>
</tr>
<tr>
<td>(0.062)</td>
</tr>
<tr>
<td>τ_W1</td>
<td>0.249</td>
</tr>
<tr>
<td>(0.049)</td>
</tr>
<tr>
<td>τ_W2</td>
<td>0.067</td>
</tr>
<tr>
<td>(0.021)</td>
</tr>
<tr>
<td>τ_W3</td>
<td>0.012</td>
</tr>
<tr>
<td>(0.017)</td>
</tr>
<tr>
<td>τ_W4</td>
<td>0.119</td>
</tr>
<tr>
<td>(0.019)</td>
</tr>
<tr>
<td>τ_W5</td>
<td>0.353</td>
</tr>
<tr>
<td>(0.064)</td>
</tr>
</tbody>
</table>

JWTTSRV improves Realized GARCH considerably (fit + forecasting)
Empirical results cont.

Table 3: Results for the GBP futures: in-sample fits of GARCH(1,1), Realized GARCH(1,1) with RV, BV, RK, TSRV, JWTSRV, Realized (Wavelet) Jump-GARCH denoted as RJ-G and RWJ-G and Realized Jump-GARCH on JWTSRV decompositions. Robust standard errors are reported in parentheses.

<table>
<thead>
<tr>
<th>In-sample</th>
<th>GARCH</th>
<th>Realized GARCH</th>
<th>Realized (W)J-GARCH</th>
<th>Realized Jump-GARCH on JWTSRV<sub>j</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RV</td>
<td>BV</td>
<td>RK</td>
<td>JwTSRV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ω</td>
<td>0.007</td>
<td>0.147</td>
<td>0.155</td>
<td>0.130</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.025)</td>
<td>(0.029)</td>
<td>(0.024)</td>
</tr>
<tr>
<td>α</td>
<td>0.052</td>
<td>0.271</td>
<td>0.283</td>
<td>0.207</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.037)</td>
<td>(0.039)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>β</td>
<td>0.941</td>
<td>0.599</td>
<td>0.568</td>
<td>0.691</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.037)</td>
<td>(0.039)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>γ</td>
<td>0.351</td>
<td>0.406</td>
<td>0.511</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.041)</td>
<td>(0.042)</td>
<td></td>
</tr>
<tr>
<td>τ<sub>j</sub></td>
<td>0.043</td>
<td>0.046</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td>(0.063)</td>
<td>(0.063)</td>
<td></td>
</tr>
<tr>
<td>τ<sub>W</sub>_1</td>
<td>0.249</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ<sub>W</sub>_2</td>
<td>0.251</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ<sub>W</sub>_3</td>
<td>0.252</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ<sub>W</sub>_4</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>τ<sub>W</sub>_5</td>
<td>0.121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ξ</td>
<td>-0.542</td>
<td>-0.549</td>
<td>-0.626</td>
<td>-0.533</td>
</tr>
<tr>
<td></td>
<td>(0.056)</td>
<td>(0.073)</td>
<td>(0.074)</td>
<td>(0.074)</td>
</tr>
<tr>
<td>η</td>
<td>1.439</td>
<td>1.400</td>
<td>1.456</td>
<td>1.445</td>
</tr>
<tr>
<td></td>
<td>(0.105)</td>
<td>(0.108)</td>
<td>(0.108)</td>
<td>(0.108)</td>
</tr>
<tr>
<td>σ<sub>a</sub></td>
<td>0.313</td>
<td>0.308</td>
<td>0.379</td>
<td>0.337</td>
</tr>
<tr>
<td></td>
<td>(0.080)</td>
<td>(0.080)</td>
<td>(0.080)</td>
<td>(0.080)</td>
</tr>
<tr>
<td>τ<sub>1</sub></td>
<td>0.041</td>
<td>-0.046</td>
<td>-0.030</td>
<td>-0.043</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.012)</td>
<td>(0.014)</td>
<td>(0.014)</td>
</tr>
<tr>
<td>τ<sub>2</sub></td>
<td>0.077</td>
<td>0.064</td>
<td>0.107</td>
<td>0.080</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.011)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>I<sub>r</sub></td>
<td>-1120.247</td>
<td>-1120.247</td>
<td>-1120.247</td>
<td>-1120.247</td>
</tr>
<tr>
<td></td>
<td>(983.410)</td>
<td></td>
<td>(983.410)</td>
<td>(983.410)</td>
</tr>
<tr>
<td>out-of-sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α<sub>M</sub></td>
<td>-0.673</td>
<td>-0.251</td>
<td>-0.325</td>
<td>-0.215</td>
</tr>
<tr>
<td></td>
<td>(0.251)</td>
<td>(0.325)</td>
<td>(0.215)</td>
<td>(0.261)</td>
</tr>
<tr>
<td>β<sub>M</sub></td>
<td>1.607</td>
<td>0.946</td>
<td>1.026</td>
<td>0.874</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td>(0.339)</td>
<td>(0.309)</td>
<td>(0.262)</td>
</tr>
<tr>
<td>R<sub>M</sub></td>
<td>0.473</td>
<td>0.471</td>
<td>0.432</td>
<td>0.463</td>
</tr>
<tr>
<td></td>
<td>(0.048)</td>
<td>(0.045)</td>
<td>(0.043)</td>
<td>(0.046)</td>
</tr>
</tbody>
</table>

Jumps further improve the results (fit + forecasting)
Empirical results cont.

<table>
<thead>
<tr>
<th>In-sample</th>
<th>GARCH</th>
<th>Realized GARCH</th>
<th>Realized (W)J-GARCH on JWTSRVj</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RV</td>
<td>BV</td>
<td>RK</td>
</tr>
<tr>
<td>(\omega)</td>
<td>0.007</td>
<td>0.147</td>
<td>0.155</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.029)</td>
<td>(0.024)</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.052</td>
<td>0.351</td>
<td>0.360</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.036)</td>
<td>(0.028)</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.941</td>
<td>0.599</td>
<td>0.568</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.037)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>0.271</td>
<td>0.283</td>
<td>0.267</td>
</tr>
<tr>
<td></td>
<td>(0.033)</td>
<td>(0.033)</td>
<td>(0.028)</td>
</tr>
<tr>
<td>(\tau_2)</td>
<td>0.043</td>
<td>0.036</td>
<td>0.049</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.016)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>(\tau_4)</td>
<td>0.249</td>
<td>0.298</td>
<td>0.252</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.016)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>(\tau_5)</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.017)</td>
<td>(0.017)</td>
</tr>
<tr>
<td>(\xi)</td>
<td>-0.542</td>
<td>-0.549</td>
<td>-0.626</td>
</tr>
<tr>
<td></td>
<td>(0.056)</td>
<td>(0.073)</td>
<td>(0.074)</td>
</tr>
<tr>
<td>(\psi)</td>
<td>1.439</td>
<td>1.490</td>
<td>1.456</td>
</tr>
<tr>
<td></td>
<td>(0.105)</td>
<td>(0.108)</td>
<td>(0.106)</td>
</tr>
<tr>
<td>(\sigma_0)</td>
<td>0.313</td>
<td>0.308</td>
<td>0.379</td>
</tr>
<tr>
<td></td>
<td>(0.080)</td>
<td>(0.080)</td>
<td>(0.080)</td>
</tr>
<tr>
<td>(\tau_1)</td>
<td>-0.041</td>
<td>-0.046</td>
<td>-0.030</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.012)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>(\tau_2)</td>
<td>0.077</td>
<td>0.064</td>
<td>0.107</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.009)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>(l(r,x))</td>
<td>-1185.123</td>
<td>-1172.427</td>
<td>-1327.555</td>
</tr>
<tr>
<td>(I(r))</td>
<td>-1001.735</td>
<td>-992.267</td>
<td>-992.605</td>
</tr>
<tr>
<td>out-of-sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_M)</td>
<td>-0.673</td>
<td>-0.251</td>
<td>-0.325</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td>(0.039)</td>
<td>(0.039)</td>
</tr>
<tr>
<td>(\beta_M)</td>
<td>1.607</td>
<td>0.946</td>
<td>1.026</td>
</tr>
<tr>
<td></td>
<td>(0.083)</td>
<td>(0.039)</td>
<td>(0.039)</td>
</tr>
<tr>
<td>(R_{Mx})</td>
<td>0.083</td>
<td>0.339</td>
<td>0.399</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.016)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>(HMSE)</td>
<td>2.877</td>
<td>1.674</td>
<td>1.758</td>
</tr>
<tr>
<td></td>
<td>(0.488)</td>
<td>(0.452)</td>
<td>(0.471)</td>
</tr>
<tr>
<td>(QLIKE)</td>
<td>0.488</td>
<td>0.452</td>
<td>0.471</td>
</tr>
</tbody>
</table>

Addition of volatility decomposition improves forecasting only slightly

separate 1st, 2nd and 3rd component carries the most information
Forecasting results

- Model shows the same performance on several Forex futures.
Forecasting results

- Model shows the same performance on several Forex futures.
- When Realized GARCH is estimated with JWTSRV, results improve considerably.
Forecasting results

- Model shows the same performance on several Forex futures.
- When Realized GARCH is estimated with JWTSRV, results improve considerably.
- When we add jumps, further improvement is gained.
Forecasting results

- Model shows the same performance on several Forex futures.
- When Realized GARCH is estimated with JWTSRV, results improve considerably.
- When we add jumps, further improvement is gained.
- Improvement from the decomposition to investment horizons is not so pronounced.
Forecasting results

- Model shows the same performance on several Forex futures.
- When Realized GARCH is estimated with JWTSRV, results improve considerably.
- When we add jumps, further improvement is gained.
- Improvement from the decomposition to investment horizons is not so pronounced.
- Still it is interesting to note that “fast scales” up to 30 minutes have most impact on the forecasts.
Further results and future work

- Generalization of the theory to multivariate setting.
Further results and future work

- Generalization of the theory to multivariate setting.
- Study of empirical volatility in the time-frequency for the first time.
Further results and future work

- Generalization of the theory to multivariate setting.
- Study of empirical volatility in the time-frequency for the first time.
- Interesting study of co-jumps and their impact.
Further results and future work

- Generalization of the theory to multivariate setting.
- Study of empirical volatility in the time-frequency for the first time.
- Interesting study of co-jumps and their impact.
- Study the impact of different dependencies in noise (wavelets allow to estimate the noise from the signal).
Further results and future work

- Generalization of the theory to multivariate setting.
- Study of empirical volatility in the time-frequency for the first time.
- Interesting study of co-jumps and their impact.
- Study the impact of different dependencies in noise (wavelets allow to estimate the noise from the signal).
- Study the behavior of volatility and covariance (beta?) on different investment horizons.

Further results and future work

- Generalization of the theory to multivariate setting.
- Study of empirical volatility in the time-frequency for the first time.
- Interesting study of co-jumps and their impact.
- Study the impact of different dependencies in noise (wavelets allow to estimate the noise from the signal).
- Study the behavior of volatility and covariance (beta?) on different investment horizons.

Realized Wavelet Jump-GARCH(1,1) online at:

Thank you very much for your attention

Questions?