Optimal Asset Liquidation using Limit Order Book Information

Sasha Stoikov
(joint work with Rolf Waeber)

Operations Research & Information Engineering, Cornell University

Friday July 19, 2012
Modeling high frequency data in finance
Stevens institute, Hoboken
Optimal Liquidation

How to liquidate X shares of an asset?

1. **Macroscopic** time scale:
 - Horizon $\bar{T} > 0$ over which the shares X need to be liquidated.
 - Depends on *long term* variables: average daily volume, strategic considerations, news events, ...

2. **Mesoscopic** time scale:
 - Trade schedule $0 \leq t_0 \leq t_1 \ldots \leq t_i \leq \ldots \leq t_n = \bar{T}$ for the “child” trades.
 - Depends on *medium term* variables: volatility of the stock, risk aversion of the trader, price impact considerations, ...

3. **Microscopic** time scale:
 - Within a time interval $(t_i, t_{i+1}]$, what is the *timing* and the *type of order* used to liquidate the “child” trade?
 - Depends on *short term* variables: limit order book information.
Literature: Mesoscopic Time Scale

1. Almgren and Chriss (1998)
 - Objective: maximize risk-adjusted revenues
 \[E(\mathcal{R}_T^x) - \lambda V(\mathcal{R}_T^x). \]
 - \(\mathcal{R}_T^x \) is the revenue from liquidation and \(x = (x_0, x_1, \ldots, x_T) \) is a deterministic trade schedule.
 - Solution: \(x_t = \frac{\sinh(\kappa(T-t))}{\sinh(\kappa T)} X \), for \(t \in \{0, \ldots, T\} \), and \(\kappa \) depends on price volatility, risk aversion, and price impact.

2. Schied, Schoneborn and Tehranchi (2010)
 \[\sup_{X \in \chi} E[u(\mathcal{R}_T^X)] \]
 - \(X \) is the optimal control within a class \(\chi \) of stochastic controls.
 - If the utility function is exponential, \(X \) is a deterministic function of time.
The trade schedule
Microscopic Time Scale

- We assume that the trade schedule is \textit{given}.
- The goal is then to liquidate one lot (the shares x_t) in the time window $(t_i, t_{i+1}]$, i.e., what is the optimal time τ in $[0, T]$ to sell the lot, where $T = t_{i+1} - t_i > 0$.
- T is typically short, e.g., 1 minute.
- For such short time periods, observing the limit order book can be very advantageous in identifying good liquidation times.
- However, \textit{latency} in the trade execution can diminish this advantage!
Latency

- Latency arises in every trade execution:
 1. Time of datafeed to travel from exchange to execution machine;
 2. The algorithm making a decision;
 3. The order being sent back to the market.

- Latency has no effect on deterministic trade schedules.

- In our model the algorithm will take into account that if a market order is sent at time t it will actually be executed at the best price available at time $t + l$, for latency $l > 0$.

- This worsen the performance of our optimal liquidation algorithm, thus allowing us to quantify the cost of latency.
Outline

1. Optimal liquidation:
 - The efficient price process.
 - Optimal stopping problem.
 - The trade and no-trade regions.

2. Trading with latency.

3. Dynamic programming approximation.

4. Backtesting strategy on TAQ data.

5. Conclusions and future research.
The Efficient Price Process

- The **efficient** or “true” price process

\[S(t) = S^b(t) + \theta(t), \]

where \(S^b(t) \) is the bid price and \(\theta(t) \) is the **imbalance process**:

\[\theta(t) = g \left(\frac{B(t)}{A(t) + B(t)} \right), \]

\(A(t) \) is the bid size, \(B(t) \) is the ask size and \(g(\cdot) \) is a cubic polynomial.

- **Assumptions:**
 - \(S(t) \) is a Lévy process,
 - \(S(t) \) is a martingale,
 - \(S^b(t) \) is in \(\mathbb{Z} \) and \(\theta(t) \in [0, 1) \).
The Optimal Liquidation Problem

- Efficient price process: \(S(t) = S^b(t) + \theta(t) \).
- Submitting a sell order at time \(t \) yields payoff \(S^b(t) = \lfloor S(t) \rfloor \leq S(t) \).
- **Goal:** Identify an optimal time \(\tau \) in \([0, T] \) to sell the share and in turn to receive \(\lfloor S(t) \rfloor \), i.e.,

\[
V(t, s) = \sup_{t \leq \tau \leq T} E[\lfloor S(\tau) \rfloor | S(t) = s],
\]

for \(s \in \mathbb{R} \) and \(t \in [0, T] \), and \(\tau \in \mathcal{T} \), where \(\mathcal{T} \) is the set of stopping times with respect to \(\sigma(S(t))_{t \geq 0} \).
Trade/No-trade Regions

- “Trade” and “No-trade” region

\[D = \{(t, s) \in [0, T] \times \mathbb{R} : V(t, s) = \lfloor s \rfloor \}, \]
\[C = \{(t, s) \in [0, T] \times \mathbb{R} : V(t, s) > \lfloor s \rfloor \}. \]

- Liquidation time

\[\tau_D = \inf \{ t \geq 0 | S(t) \in D \}. \]

Proposition
\[\tau_D \in T \quad \text{and} \]
\[V(t, s) = \mathbb{E}[\lfloor S(\tau_D) \rfloor | S(t) = s]. \]
Structural Properties of Value Function

Proposition

The function $V(t, s)$ satisfies the following properties:

(a) fix $t \in [0, T]$, then $V(t, s)$ is non-decreasing in s;

(b) fix $s \in \mathbb{R}$, then $V(t, s)$ is non-increasing in t;

(c) $V(t, s + z) = V(t, s) + z$ for all $s \in \mathbb{R}$, $t \in [0, T]$ and $z \in \mathbb{Z}$;

(d) $V(t, z) = z$ for all $t \in [0, T]$ and $z \in \mathbb{Z}$;

(e) $V(T, s) = \lfloor s \rfloor$ for all $s \in \mathbb{R}$.
State Space Reduction

1. Property (c) shows that

\[V(s, t) = \sup_{t \leq \tau \leq T} \mathbb{E}[S(\tau) | S(t) = s] = \sup_{t \leq \tau^\theta \leq T} \mathbb{E}[S(\tau^\theta) | S(t) = s], \]

where \(\tau^\theta \) are stopping times adapted to \((\theta(t))_{t \geq 0} \).

2. Further, for \(\tau \in T \):

\[
\mathbb{E}[S(\tau) | S(t) = s] = \mathbb{E}[S(\tau) - \theta(\tau) | S(t) = s] \\
= s - \mathbb{E}[\theta(\tau) | S(t) = s].
\]

Hence, the problem \(V(t, s) \) is equivalent to

\[V^\theta(t, u) = \inf_{t \leq \tau^\theta \leq T} \mathbb{E}[\theta(\tau^\theta) | \theta(0) = u], \]

and \(V(s, t) = s - V^\theta(t, s - \lfloor s \rfloor) \).
Optimal Liquidation based on Minimizing Imbalance

Define

\[D^\theta = \left\{ (t, u) \in [0, T] \times [0, 1) : V^\theta(t, u) = u \right\}, \]
\[C^\theta = \left\{ (t, u) \in [0, T] \times [0, 1) : V^\theta(t, u) < u \right\}. \]

Proposition

There exists a non-decreasing function \(w^* : [0, T] \rightarrow [0, 1] \) with \(w^*(T) = 1 \), such that \(D^\theta = \{ (u, t) \in [0, 1) \times [0, T) : u \leq w^*(t) \} \).
Trade/no Trade Regions

Jump Process, $\lambda(T) = 500$, $K = 0.4$, $\sigma = 0.005$

- Latency = 0T
- Timesteps: 10000
- States: 500
Sensitivity of the Trade Region

As the volatility of the price process $S(t)$ increases one can liquidate less aggressively (assuming no risk aversion).
Trading with Latency

- A trade triggered at time t is executed at time $t + l$ for $l > 0$.
- Consider
 \[
 V^l(t, s) = \sup_{t \leq \tau \leq T - l} \mathbb{E}[S^b(\tau + l)|S(t) = s],
 \]
 where $\tau \in T$.
- Define the payoff function $G^l(s) = \mathbb{E}[S^b(l)|S(0) = s]$ for $s \in \mathbb{R}$, then, for $\tau \in T$,
 \[
 \mathbb{E}[S^b(\tau + l)|S(t) = s] = \mathbb{E}[[\mathbb{E}[S^b(\tau + l)|S(\tau)]|S(t) = s]
 = \mathbb{E}[G^l(S(\tau))|S(t) = s].
 \]
- Therefore
 \[
 V^l(t, s) = \sup_{t \leq \tau \leq T - l} \mathbb{E}[G^l(S(\tau))|S(0) = s].
 \]
Structural Properties

Proposition

The function $V^l(t, s)$ satisfies the following properties:

(a) fix $t \in [0, T]$, then $V^l(t, s)$ is non-decreasing in s;
(b) fix $s \in \mathbb{R}$, then $V^l(t, s)$ is non-increasing in t;
(c) $V^l(t, s + z) = V^l(t, s) + z$ for all $s \in \mathbb{R}$, $t \in [0, T]$ and $z \in \mathbb{Z}$;
(d) $V^l(T - l, s) = G^l(s)$ for all $s \in \mathbb{R}$.
Latency is Costly

Proposition

Fix $t \in [0, T], s \in \mathbb{R}$, then $V'(t, s)$ is non-increasing in l for $l \in [0, T]$.
Reducing the State Space

Analogous to the no-latency case one can show that $V^l(t, s)$ is equivalent to

$$V^{l, \theta}(t, u) = \inf_{t \leq \tau^\theta \leq T - l} \mathbb{E}[G^{\theta, l}(\tau^\theta) | \theta(t) = u],$$

where $G^{\theta, l}(u) = \mathbb{E}[\theta(l) | \theta(0) = u]$.

![Payoff Function $G^{\theta, l}(\theta(t))$](image)
Trade/No-Trade Regions with Latency

The “trade region” is still connected, but the “no-trade” region does not need to be connected anymore:

Proposition

There exists a non-decreasing function \(w^*_i : [0, T] \rightarrow [0, 1] \) and a non-increasing function \(v^*_i : [0, T] \rightarrow [0, 1] \), with \(v^*_i \leq w^*_i \), \(w^*_i(t) = 1 \) for \(t \in [T - l, T] \) and \(v^*_i = 0 \) for \(t \in [T - l, T] \), such that

\[
D_{\theta,l} = \{(t, u) \in [0, T] \times [0, 1) : v^*_i(t) \leq u \leq w^*_i(t)\}.
\]
The red line shows the optimal policy without adjustment.
Discretization Approximation

- Knowing $V^l(t, s)$, resp., $V^{\theta, l}(t, u)$, is enough to identify good liquidation times.

- For general Lévy-processes no closed-form solutions exist, hence we rely on a time- and space-discretization.

- Let $N, E \in \mathbb{N}$. Define,

 $$k : [0, T] \rightarrow K = \{0, \ldots, N\}$$
 $$t \mapsto k(t) = \sup \{n \in \{0, \ldots, N\} \mid nT/N \leq t\},$$

 $$h : [0, 1) \rightarrow H = \{1, \ldots, E\}$$
 $$x \mapsto h(x) = \lfloor Ex \rfloor + 1.$$

- These mappings transform the original state space $[0, T] \times [0, 1)$ into a discrete state space with $(N + 1)E$ states.
Discretization Approximation cont.

- Consider the discrete-time, discrete-space version of $\theta(t)$, i.e.,
 \[\tilde{\theta}(j(t)) = h(\theta(t)). \]

- Let $P_{\tilde{\theta}}$ denote the transition matrix of the homogenous Markov chain $\tilde{\theta}(n)$, i.e., the matrix with entries
 \[p_{ij} = \mathbb{P}\left(\tilde{\theta}(n + 1) = j | \tilde{\theta}(n) = i \right), \]
 for $i, j \in \{1, \ldots, E\}$ and $n \in \{0, \ldots, N\}$.

- Approximate $V^{\theta,l}(t, u)$ and $D^{\theta,l}$ with
 \[\tilde{V}_{E,N}^{\theta,l}(n, i) = \inf_{\tau \in \tilde{T}^{\theta,l}} \mathbb{E}[\tilde{G}^{\theta,l}(\tau) | \tilde{\theta}(n) = i], \]
 \[\tilde{D}^{l,\theta}_{E,N} = \left\{ (n, i) \in K \times H : \tilde{V}_{E,N}^{\theta,l}(n, i) = \tilde{G}^{\theta,l}(i) \right\}, \]
Dynamic Program

- Bellman’s recursion:
 \[V_{E,N}^{\theta,l}(n, i) = \max \left\{ \tilde{G}_{E,N}^{\theta,l}(i), \mathbb{E}[V_{E,N}^{\theta,l}(n + 1, \tilde{\theta}(n + 1)) | \tilde{\theta}(n) = i] \right\}, \]
 for \(i \in \{0, \ldots, N\} \) and \(n \in \{0, \ldots, N\} \).

- Conditional probability:
 \[\mathbb{E}[V_{E,N}^{\theta,l}(\tilde{\theta}(n + 1), n + 1) | \tilde{\theta}(n) = i] = \sum_{k=1}^{E} p_{ik} V_{E,N}^{\theta,l}(n + 1, k). \]
Discretization Convergence

As $N \to \infty$ and $E \to \infty$ the boundary between trade and no-trade region converges to a smooth curve.
Empirical Backtesting
Set Up

- Backtesting on TAQ data for 5-years US treasury bonds for 21 days (July 2010).
- Assume that one lot is traded per minute (avoids trading on the same quote).
- Need a price model for

\[S(t) = S^b(t) + \theta(t), \]

the bid price \(S^b(t) \) can be observed in TAQ data.
- Many possibilities to construct \(\theta(t) \) based on limit order book data.
- \(\theta(t) \) is the trade secret of many algorithmic trading companies.
Imbalance Process

- We use

\[\theta(t) = g \left(\frac{B(t)}{A(t) + B(t)} \right) , \]

where \(A(t) \) (\(B(t) \)) is best ask (bid) size and \(g(\cdot) \) is a cubic polynomial with constraints \(g(0) = 0, g(0.5) = 0.5 \) and \(g(1) = 1 \) (leaving 1 degree of freedom).

- This transformation makes the stationary distribution almost uniform, which is necessary since \(S(t) \) is a Lévy process.
Empirical Evidence for Price Model

Empirical observed imbalance $\theta(t)$ **conditioned a trade occurs on the next quote** gives credential that traders use similar trading strategies as described.
Calibrate Price Model

- Assume $S(t) = S^b(t) + \theta(t)$ is a pure jump process.
- Jumps occur according a homogenous Poisson process with intensity parameter $\lambda = 355$ jumps per minute.
- A two-sided generalized Pareto distribution with shape parameter $K = 0.4$ and scale parameter $\sigma = 0.01$ provides a good fit of the jump distribution.
Optimal Stopping vs. TWAP Strategy

• The time-weighted average price (TWAP) strategy liquidates one share per minute independently of the state of the limit order book. (Only trades when spread=1).

• Consider residuals $R = S^b_\tau - S^b_0$, where τ is the stopping time from the optimal stopping problem $V(t,s)$ calibrated to a pure jump process $S(t)$.

• Compare 5,649 intervals of length 1 minute.

• Without latency the optimal liquidation strategy saves on average 26 $ per share, i.e., 1/3 of the spread (Spread is 78$ for 5 yrs US-treasury bonds):

\[
\begin{array}{c|c|c|c}
\text{Optimal policy vs. TWAP} & \mathbb{E}[R] & \sigma(\hat{R}) & P\text{-value} \\
26.26 $ & 49.14 $ & 2.64 \cdot 10^{-200}
\end{array}
\]
Realized Imbalances

Realized Imbalances TWAP

Realized Imbalances Optimal Stopping

Counts

Counts

θ(t)
Effect of Trading Horizon T
Cost of Latency

- **Cost of latency:**

\[
\text{COL} = \mathbb{E}[S_b(\tau^0 + l) - S_b(\tau^0)],
\]

where \(\tau^0\) is the stopping time induced by \(V(t, s)\).

- **Adjusted cost of latency:**

\[
\text{COL}_{adj} = \mathbb{E}[S_b(\tau^I + l) - S_b(\tau^0)],
\]

where \(\tau^I\) is the stopping time induced by the adjusted problem \(V^I(t, s)\).

- Note, we do not calculate the COL with respect to the TWAP strategy, but with respect to the **optimal strategy with no latency**.
The Cost of Latency cont.

- 10ms latency \(\approx\) 10$ per share.
- For latencies \(\geq 2000\)ms (i.e., 2 secs) the advantage of observing the limit order book diminishes (performance becomes similar to TWAP).
- Adjusting the liquidation policy brings only minor improvement in the performance.
Conclusions

• We consider an optimal stopping problem that depends on:
 • Information found in the order book;
 • Latency;
 • The time left to catch up with the TWAP algorithm.
• The solution comes in the form of a trade/no-trade regions in the imbalance process.
• We estimate model parameters with "Level II" trades and quotes data.
• We find that our optimal liquidation algorithm significantly outperforms a TWAP algorithm.
• We quantify the cost of latency.
• Future research:
 1. Modeling limit order executions.
 2. Game-theoretic considerations, i.e., prevent front-running of such a liquidation algorithm.
THANK YOU!